Flame Stability of Methane and Syngas Oxy-Fuel Steam Flames
2013
- 17Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage17
- Abstract Views17
Article Description
Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy-combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures, which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion, this research presents the experimental measurements of flame stability of CH4/O2and syngas (H2–CO)/O2 flames. Effects of the H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation, i.e., CO2 and H2O (steam) acting as diluents on burner operability, are also presented. The roles of firing input on flame stability are then analyzed. For this study, it was observed that many oxy-flames did not stabilize without exhaust gas recirculation because of their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient (gF) values for CH4–O2–CO2 flames. The scaling relation [gF = c(SL2/α)] for different burner diameters was obtained for various diameter burners. The paper shows that results correlated linearly with a scaling value of c = 0.0174.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know