Interaction Topologies and Information Flow
2009
- 226Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage226
- Downloads204
- Abstract Views22
Thesis / Dissertation Description
Networks are ubiquitous, underlying systems as diverse as the Internet, food webs, societal interactions, the cell, and the brain. Of crucial importance is the coupling of network structure with system dynamics, and much recent attention has focused on how information, such as pathogens, mutations, or ideas, ow through networks. In this dissertation, we advance the understanding of how network structure a ects information ow in two important classes of models. The rst is an independent interaction model, which is used to investigate the propagation of advantageous alleles in evolutionary algorithms. The second is a threshold model, which is used to study the dissemination of ideas, fads, and innovations throughout populations. This journal-format dissertation comprises three interrelated studies, in which we investigate the in uence of network structure on the dynamical properties of information ow. In the rst study, we develop an analytical technique to approximate system dynamics in arbitrarily structured regular interaction topologies. In the second study, we investigate the ow of advantageous alleles in degree-correlated scale-free population structures, and provide a simple topological metric for assessing the selective pressures induced by these networks. In the third study, we characterize the conditions in which global information cascades occur in threshold models of binary decisions with externalities, structured on degree-correlated Poisson-distributed random networks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know