Evolution of Vernalization and Photoperiod-Regulated Genetic Networks in the Grass Subfamily Pooideae
2016
- 213Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage213
- Downloads113
- Abstract Views100
Thesis / Dissertation Description
Flowering time is a carefully regulated trait that integrates cues from temperature and photoperiod to coordinate flowering at favorable times of the year. This dissertation aims to understand the evolution of genetic architecture that facilitated the transition of Pooideae, a subfamily of grass, from the tropics to the temperate northern hemisphere approximately 50 million years ago. Two traits hypothesized to have facilitated this evolutionary shift are the use of long-term low-temperature (vernalization) to ready plants for flowering, and long-day photoperiods to induce flowering. In chapter one I review literature on the regulation of grass flowering by vernalization and photoperiod, and in chapters two and three I determine the role of VERNALIZATION 1 (VRN1) and VRN2, known to confer vernalization responsiveness in core Pooideae crop species, in flowering time across Pooideae. In chapter four, I then test predictions of the hypothesis that the Brachypodium distachyon miR5200 ortholog in the ancestor of Pooideae was important for suppressing short day flowering through its negative regulation of flowering time integrator FLOWERING LOCUS T (FT)/VERNALIZATION3 (VRN3). In combination with other studies, my data demonstrate that VRN1-mediated vernalization responsiveness evolved early in the Pooideae, while VRN2-mediated vernalization responsiveness appears to have evolved much later in the diversification of Pooideae. Although miR5200 likely evolved early in the Pooideae, its transcriptional regulation by short day photoperiod appears derived within Brachypodium distachyon. This work answers important questions about the evolutionary origin of temperature- and photoperiod-mediated flowering in an economically important clade that contains crop species such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Directions for future work on this topic are discussed in chapter 5.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know