Sub-pixel techniques to improve spatial resolution
2001
- 451Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage451
- Downloads410
- Abstract Views41
Thesis / Dissertation Description
Image acquisition using a scene sampling device generally results in a loss of fidelity in the acquired image, particularly if the scene contains high frequency features. Acquired images are also degraded by the blurring effects of acquisition filtering, image reconstruction, and additive noise effects. to compensate for these degradations, a digital restoration filter that attempts to partially eliminate the blurring while avoiding amplification of the noise effects is needed. In addition, to compensate for undersampling, a subpixel technique known as microscanning is required. This dissertation provides research into the spatial resolution enhancement of digital images based on subpixel techniques that will help to minimize the impact of these degradations. Subpixel techniques investigated include microscanning and estimation of the function that measures the amount of blurring incurred during acquisition. These techniques will be used in conjunction with a constrained least squares restoration filter to achieve the best possible representation of the original scene.
Bibliographic Details
William & Mary School of Arts & Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know