A Survey of Methods to Determine Quantum Symmetry of Graphs
2021
- 313Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage313
- Downloads204
- Abstract Views109
Thesis / Dissertation Description
We introduce the theory of quantum symmetry of a graph by starting with quantum permutation groups and classical automorphism groups. We study graphs with and without quantum symmetry to provide a comprehensive view of current techniques used to determine whether a graph has quantum symmetry. Methods provided include specific tools to show commutativity of generators of algebras of quantum automorphism groups of distance-transitive graphs; a theorem that describes why nontrivial, disjoint automorphisms in the automorphism group implies quantum symmetry; and a planar algebra approach to studying symmetry.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know