Analysis of Heat Transfer on Turbulence Generating Ribs using Dynamic Mode Decomposition
2018
- 235Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage235
- Downloads168
- Abstract Views67
Thesis / Dissertation Description
Ducts with turbulence-promoting ribs are common in heat transfer applications. This study uses a recent modal extraction technique called Dynamic Mode Decomposition (DMD) to determine mode shapes of the spatially and temporally complex flowfield inside a ribbed duct. One subject missing from current literature is a method of directly linking a mode to a certain engineering quantity of interest. Presented is a generalized methodology for producing such a link utilizing the data from the DMD analysis. Theory suggests exciting the modes which are identified may cause the flow to change in such a way to promote the quantity of interest, in this case, heat transfer. This theory is tested by contouring the walls of the duct by the extracted mode shapes. The test procedure is taken from an industrial perspective. An initial, unmodified geometry provides a baseline for comparison to later contoured models. The initial case is run as a steady-state Reynolds-Averaged Navier-Stokes model. Large-Eddy Simulation generates the necessary data for the DMD analysis. Several mode shapes extracted from the flow are applied to the duct walls and run again in the RANS model, then compared to the baseline, and their relative performance examined.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know