Robust Dynamic Panel Data Models Using ��-Contamination
2021
- 411Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage411
- Downloads307
- Abstract Views104
Paper Description
This paper extends the work of Baltagi et al. (2018) to the popular dynamic panel data model. We investigate the robustness of Bayesian panel data models to possible misspecification of the prior distribution. The proposed robust Bayesian approach departs from the standard Bayesian framework in two ways. First, we consider the ε-contamination class of prior distributions for the model parameters as well as for the individual effects. Second, both the base elicited priors and the ε-contamination priors use Zellner (1986)'s g-priors for the variance-covariance matrices. We propose a general "toolbox" for a wide range of specifications which includes the dynamic panel model with random effects, with cross-correlated effects à la Chamberlain, for the Hausman-Taylor world and for dynamic panel data models with homogeneous/heterogeneous slopes and cross-sectional dependence. Using a Monte Carlo simulation study, we compare the finite sample properties of our proposed estimator to those of standard classical estimators. The paper contributes to the dynamic panel data literature by proposing a general robust Bayesian framework which encompasses the conventional frequentist specifications and their associated estimation methods as special cases.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know