Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines
BMC cancer, Page: 104
2005
- 199Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage199
- Downloads160
- Abstract Views39
Article Description
BACKGROUND: Previous data from our laboratory has indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. METHODS: GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU) assay. RESULTS: GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC) cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with beta2-adrenergic antagonist ICI 118,551 (100 microM) daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the beta-adrenergic agonist isoproterenol (10 microM) decreased growth rates in these cells. The GIRK inhibitor U50488H (2 microM) also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2) was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4) mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4) mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein expression was not seen in any non-SCLC cells. CONCLUSION: We feel that this data may indicate that stimulation of GIRK1 or GIRK2 channels may be important in lung cancer. Stimulation of GIRK channels and beta-adrenergic signaling may activate similar signaling pathways in both SCLC and breast cancer, but lead to different results.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know