Estimating ancestry and heterozygosity of hybrids using molecular markers
2012
- 123Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage123
- Downloads119
- Abstract Views4
Article Description
BackgroundHybridization, genetic mixture of distinct populations, gives rise to myriad recombinant genotypes. Characterizing the genomic composition of hybrids is critical for studies of hybrid zone dynamics, inheritance of traits, and consequences of hybridization for evolution and conservation. Hybrid genomes are often summarized either by an estimate of the proportion of alleles coming from each ancestral population or classification into discrete categories like F1, F2, backcross, or merely “hybrid” vs. “pure”. In most cases, it is not realistic to classify individuals into the restricted set of classes produced in the first two generations of admixture. However, the continuous ancestry index misses an important dimension of the genotype. Joint consideration of ancestry together with interclass heterozygosity (proportion of loci with alleles from both ancestral populations) captures all of the information in the discrete classification without the unrealistic assumption that only two generations of admixture have transpired. MethodsI describe a maximum likelihood method for joint estimation of ancestry and interclass heterozygosity. I present two worked examples illustrating the value of the approach for describing variation among hybrid populations and evaluating the validity of the assumption underlying discrete classification. ResultsNaively classifying natural hybrids into the standard six line cross categories can be misleading, and false classification can be a serious problem for datasets with few molecular markers. My analysis underscores previous work showing that many (50 or more) ancestry informative markers are needed to avoid erroneous classification. ConclusionAlthough classification of hybrids might often be misleading, valuable inferences can be obtained by focusing directly on distributions of ancestry and heterozygosity. Estimating and visualizing the joint distribution of ancestry and interclass heterozygosity is an effective way to compare the genetic structure of hybrid populations and these estimates can be used in classic quantitative genetic methods for assessing additive, dominant, and epistatic genetic effects on hybrid phenotypes and fitness. The methods are implemented in a freely available package “HIest” for the R statistical software ( http://cran.r-project.org/web/packages/HIest/index.html webcite).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know