SABR: Development of a Neuromorphic Balancing Robot
2021
- 232Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage232
- Downloads141
- Abstract Views91
Artifact Description
We discuss the development of a self-adjusted balancing robot (SABR) using a neuromorphic computing framework for control. Implementations of two-wheeled balancing robots have been achieved using traditional algorithms, often in the form of proportional-integral-derivative (PID) control. We aim to achieve the same task using a neuromorphic architecture, which offers potential for higher power efficiency than conventional processing techniques. We utilize evolutionary optimization (EO) and the second iteration of Dynamic Adaptive Neural Network Arrays (DANNA2) developed by the Laboratory of Tennesseans Exploring Neural Networks (TENNLab). For the purpose of comparison, a traditional balancing robot was first designed using PID control; the neuromorphic implementation was then designed. This work demonstrates the simplicity and flexibility of DANNA2's neural network architecture, as this framework can be simulated on a simple computing platform. As a proof-of-concept, a trained network was able to balance the physical system by simulating the network on a Raspberry Pi. We further discuss possible improvements to the system and future work implementing the system on an FPGA.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know