CHARACTERIZATION OF AND CONTROLLING MORPHOLOGY OF ULTRA-THIN NANOCOMPOSITES
2013
- 617Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage617
- Downloads555
- Abstract Views62
Thesis / Dissertation Description
Ultrathin film nanocomposites are becoming increasingly important for specialized performance of commercial coatings. Critical challenges for ultrathin film nanocomposites include their synthesis and characterization as well as their performance properties, including surface roughness, optical properties (haze, refractive index as examples), and mechanical properties. The objective of this work is to control the surface roughness of ultrathin film nanocomposites by changing the average particle size and the particle volume fraction (loading) of monomodal particle size distributions. This work evaluated one-layer and two-layer films for their surface properties. Monodispersed colloidal silica nanoparticles were incorporated into an acrylate-based monomer system as the model system. Ultrathin nanocomposites were prepared with three different size colloidal silica (13, 45, and 120 nm nominal diameters) at three different particle loadings (20, 40, and 50 vol. % inorganic solids). Silica particles were characterized using DLS and TEM. AFM was used to measure the root mean square roughness (Rq), ΔZ, and location-to-location uniformity of one-layer and two-layer nanocomposite coatings. Developing an understanding about the properties affected by the type and amount of particles used in a nanocomposite can be used as a tool with nanocharacterization techniques to quickly modify and synthesize desired ultrathin film coatings.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know