Deep Learning Models for CT Image Standardization
2023
- 530Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage530
- Downloads414
- Abstract Views116
Thesis / Dissertation Description
Multicentric CT imaging studies often encounter images acquired with scanners from different vendors or using different reconstruction algorithms. This leads to inconsistencies in noise level, sharpness, and edge enhancement, resulting in a lack of homogeneity in radiomic characteristics. These inconsistencies create significant variations in radiomic features and ambiguity in data sharing across different institutions. Therefore, normalizing CT images acquired using non-standardized protocols is vital for decision-making in cross-center large-scale data sharing and radiomics studies. To address this issue, we present four end-to-end deep-learning-based models for CT image standardization and normalization. The first two models require paired training data and can standardize images acquired from the same scanner but with different non-standardized protocols. The third model requires unpaired training data and can standardize images from one protocol to another. The final model is more robust and can utilize both paired and unpaired data during training. It can be used to standardize images within a scanner or between scanners. All the models' performances were evaluated based on the radiomic features. Our experimental results show that the proposed models can effectively reduce scanner-related radiomic feature variations and improve the reliability of CT imaging radiomic features.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know