DETERMINING RATES OF LANDSCAPE RESPONSE TO TECTONIC FORCING ACROSS A RANGE OF TEMPORAL SCALES AND EROSIONAL MECHANISMS: TETON RANGE, WY
2019
- 325Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage325
- Downloads208
- Abstract Views117
Thesis / Dissertation Description
Understanding how mountain landscapes respond to variations in tectonic forcing over a range of temporal scales in active mountain belts remains as a prominent challenge in tectonic and geomorphological studies. Although a number of empirical and numerical studies have examined this problem, many of them were complicated by issues of scale and climatic variability. More specifically, the relative efficiencies of fluvial and glacial erosion, which are presumably controlled by climate, are difficult to unravel. The Teton Range in Wyoming, which results from motion on the crustal-scale Teton fault, is an ideal natural laboratory for addressing this challenge as the tectonic uplift boundary condition and the variation of uplift along strike is well-documented by previous studies and due to its relatively small size, climate can be reasonably expected to vary consistently along strike. Here, we present the results from a study that examines how the Teton landscape responds across the longest (106-7 yrs) and shortest (102-4 yrs) temporal scales. Long-term canyon incision rates determined from apatite (U-Th)/He (AHe) analysis of major drainages are highest (0.24 mm yr-1) where measured uplift rates and duration are highest (near Mount Moran), leading us to propose that tectonic forcing operates as the first order control on long-term Teton erosion. Short-term denudation rates, which are derived by determining sediment volumes in Moran Bay that are deposited in catchments generated during the most recent glacial interval (Pinedale, ~15.5 ka), are 0.00303 – 0.4672 mm yr-1. We compare these rates to previous work, which found that high rock fall rates (1.13-1.14 mm yr-1) deposit large talus volumes in Avalanche and Moran Canyons. Despite their magnitude, such high rates of mass wasting are not sustained over long periods of time, as measured lake sediment volumes (0.007 km3) are. We conclude that the Tetons are transport limited during the interglacial and large volumes of canyon sediment generated during this time cannot be moved absent the advance of valley glaciers. That is, fluvial systems in small mountain systems are substantially less effective than glaciers in denuding mountain topography.
Bibliographic Details
University of Kentucky Libraries
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know