Nonlinear Hierarchical Models for Longitudinal Experimental Infection Studies
2015
- 585Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage585
- Downloads359
- Abstract Views226
Thesis / Dissertation Description
Experimental infection (EI) studies, involving the intentional inoculation of animal or human subjects with an infectious agent under controlled conditions, have a long history in infectious disease research. Longitudinal infection response data often arise in EI studies designed to demonstrate vaccine efficacy, explore disease etiology, pathogenesis and transmission, or understand the host immune response to infection. Viral loads, antibody titers, symptom scores and body temperature are a few of the outcome variables commonly studied. Longitudinal EI data are inherently nonlinear, often with single-peaked response trajectories with a common pre- and post-infection baseline. Such data are frequently analyzed with statistical methods that are inefficient and arguably inappropriate, such as repeated measures analysis of variance (RM-ANOVA). Newer statistical approaches may offer substantial gains in accuracy and precision of parameter estimation and power. We propose an alternative approach to modeling single-peaked, longitudinal EI data that incorporates recent developments in nonlinear hierarchical models and Bayesian statistics. We begin by introducing a nonlinear mixed model (NLMM) for a symmetric infection response variable. We employ a standard NLMM assuming normally distributed errors and a Gaussian mean response function. The parameters of the model correspond directly to biologically meaningful properties of the infection response, including baseline, peak intensity, time to peak and spread. Through Monte Carlo simulation studies we demonstrate that the model outperforms RM-ANOVA on most measures of parameter estimation and power. Next we generalize the symmetric NLMM to allow modeling of variables with asymmetric time course. We implement the asymmetric model as a Bayesian nonlinear hierarchical model (NLHM) and discuss advantages of the Bayesian approach. Two illustrative applications are provided. Finally we consider modeling of viral load. For several reasons, a normal-errors model is not appropriate for viral load. We propose and illustrate a Bayesian NLHM with the individual responses at each time point modeled as a Poisson random variable with the means across time points related through a Tricube mean response function. We conclude with discussion of limitations and open questions, and a brief survey of broader applications of these models.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know