Kinetics and Mechanisms of Atrazine Adsorption and Desorption in Soils Under No-Till and Conventional Management
1991
- 44Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage44
- Downloads36
- Abstract Views8
Report Description
Both soils (Maury silt loam and Sadler) exhibited three apparent mechanisms of atrazine adsorption. The first two mechanisms were very rapid (10 minutes) and were assigned to soil-clay surface adsorption reactions via hydrogen bonding. The quantity of atrazine involved in these two reactions for the 0.5 mg/1 solution atrazine varied, depending on the soil, from 67 μg/100 g clay to 219 μg/100 g clay. The reason there were two possible atrazine sinks in this range of atrazine adsorption was believed to be the presence of two types of reactive surfaces, the clay inorganic phase and the organic carbon phase. The latter phase exhibited more influence on the Maury silt loam soil than on the Sadler soil, where the Maury silt loam soil contained more organic carbon than the Sadler soil. The third mechanism involved an atrazine condensation mechanism. It was a relatively slow reaction and it appeared to persist for at least 2 hours. This mechanism accounted for about three fourths of the total atrazine adsorbed. After 75 minutes of solution flow the total atrazine adsorbed by the soil clay samples varied from 333 μg/100 g to 710 μg/100 g. Reversibility of the adsorption process was shown to be limited. Approximately one-third of the adsorbed atrazine was desorbed after a 2 hour leaching with l mmol L-1 CaCl2 solution. The desorption process was shown to be controlled by two types of reactions. A short rapid one and a long extremely slow one (diffusion controlled). The above findings suggest that the amount of atrazine leaching into surface water or groundwater would depend on the amount of time atrazine had to react with the soil. If it rained immediately following atrazine application then most of the atrazine would be carried in the runoff, making water the main mechanism of atrazine movement. If, on the other hand, a significant amount of time passed after atrazine was applied then a much smaller proportion of the applied atrazine would be leached, making soil erosion the main mechanism of atrazine movement. Equations for all these processes have been developed to aid in modeling the movement of atrazine during rain fall events.
Bibliographic Details
https://uknowledge.uky.edu/kwrri_reports/27; https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1026&context=kwrri_reports; http://dx.doi.org/10.13023/kwrri.rr.181; https://doi.org/10.13023%2Fkwrri.rr.181; https://dx.doi.org/10.13023/kwrri.rr.181; https://uknowledge.uky.edu/kwrri_reports/27/
University of Kentucky Libraries
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know