ESTIMATION IN PARTIALLY LINEAR MODELS WITH CORRELATED OBSERVATIONS AND CHANGE-POINT MODELS
2018
- 288Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage288
- Downloads151
- Abstract Views137
Thesis / Dissertation Description
Methods of estimating parametric and nonparametric components, as well as properties of the corresponding estimators, have been examined in partially linear models by Wahba [1987], Green et al. [1985], Engle et al. [1986], Speckman [1988], Hu et al. [2004], Charnigo et al. [2015] among others. These models are appealing due to their flexibility and wide range of practical applications including the electricity usage study by Engle et al. [1986], gum disease study by Speckman [1988], etc., wherea parametric component explains linear trends and a nonparametric part captures nonlinear relationships.The compound estimator (Charnigo et al. [2015]) has been used to estimate the nonparametric component of such a model with multiple covariates, in conjunction with linear mixed modeling for the parametric component. These authors showed, under a strict orthogonality condition, that parametric and nonparametric component estimators could achieve what appear to be (nearly) optimal rates, even in the presence of subject-specific random effects.We continue with research on partially linear models with subject-specific random intercepts. Inspired by Speckman [1988], we propose estimators of both parametric and nonparametric components of a partially linear model, where consistency is achievable under an orthogonality condition. We also examine a scenario without orthogonality to find that bias could still exist asymptotically. The random intercepts accommodate analysis of individuals on whom repeated measures are taken. We illustrate our estimators in a biomedical case study and assess their finite-sample performance in simulation studies.Jump points have often been found within the domain of nonparametric models (Muller [1992], Loader [1996] and Gijbels et al. [1999]), which may lead to a poor fit when falsely assuming the underlying mean response is continuous. We study a specific type of change-point where the underlying mean response is continuous on both left and right sides of the change-point. We identify the convergence rate of the estimator proposed in Liu [2017] and illustrate the result in simulation studies.
Bibliographic Details
https://uknowledge.uky.edu/statistics_etds/32; https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1037&context=statistics_etds; http://dx.doi.org/10.13023/etd.2018.201; https://doi.org/10.13023%2Fetd.2018.201; https://dx.doi.org/10.13023/etd.2018.201; https://uknowledge.uky.edu/statistics_etds/32/
University of Kentucky Libraries
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know