PlumX Metrics
Embed PlumX Metrics

Detection of moldy maize aflatoxin B1 and gibberellinby hyperspectral coupled with neural network

Vol: 34, Issue: 11, Page: 64-69
2018
  • 0
    Citations
  • 29
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Artifact Description

In order to eliminate the influence of scattering, the original spectrum was processed by multiplicative scatter correction (MSC). The effective band was selected according to the correlation coefficient method, and 8 characteristic wavelengths were selected by continuous projection algorithm combined with information entropy. Finally, the effective bands and different features were used to establish prediction model for mildew maize aflatoxin B1 and gibberellin content at wavelength by BP neural network. The results showed that the prediction model established by spectral information at 8 kinds of characteristic wavelengths was the best, with the correct prediction rate of aflatoxin B1 content of 98.74%, the root mean square error of 0.048 5, and the correct rate of gibberellin content prediction of 100%, and the square root error of 0.160 5. Therefore, the method of hyperspectral coupled with neural network is feasible to detect the aflatoxin B1 and gibberellin content in moldy maize.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know