A data-driven approach for quantifying the resilience of railway networks
2024
- 6Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage6
- Abstract Views6
Article Description
Disruptions occur frequently in railway networks, requiring timetable adjustments, while causing serious delays and cancellations. However, little is known about the performance dynamics during disruptions nor the extent to which the resilience curve applies in practice. This paper presents a data-driven quantification approach for an ex-post assessment of the resilience of railway networks. Using historical traffic realization data in the Netherlands, resilience curves are reconstructed using a new composite indicator, and quantified for a large set of single disruptions. The values of the resilience metrics are compared across disruptions of different causes using Welch’s ANOVA and the Games-Howell test. Additionally, representative resilience curves for each disruption cause are determined. Results show a significant heterogeneity in the shape of the resilience curves, even within disruptions of the same cause. The proposed approach represents a useful decision support tool for practitioners to assess disruptions dynamics and propose best measures to improve resilience.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know