TRACK DEGRADATION ASSESSMENT USING GAGE RESTRAINT MEASUREMENTS
2001
- 82Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage82
- Abstract Views82
Article Description
Gage restraint is an important indicator of track condition and safety. In 1999, approximately 13% of derailments were caused by reductions in gage restraint and the resulting widening of the track gage. Existing techniques for the measurement of gage restraint allow identification of track sections with weak lateral support. However, little has been done to investigate the change in, or weakening of, gage restraint over time as a function of track, traffic, and environmental parameters. A track degradation assessment study is under way to develop models that can be used to predict changes in gage restraint by using data obtained from the automated Gage Restraint Measurement System. The degradation models will be useful for forecasting the future condition of the track, determining the appropriate frequency and timing of track inspections, and evaluating the effectiveness of maintenance strategies. A literature review of track degradation models and previous work on gage restraint analysis is presented. The rationale for adoption of an empirical approach to gage restraint degradation modeling is explained. The processing applied to the automatically collected data and the preliminary database program developed to store the information and estimate track degradation equations are also described. The track degradation analysis and database development study currently focuses on gage restraints and track geometry parameters as measures of condition. In the future, this can be extended to include other degradation parameters for a comprehensive track performance analysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know