Empirical Analysis of Traveling Backwards and Passenger Flows Reassignment on a Metro Network with Automatic Fare Collection (AFC) Data and Train Diagram
2018
- 8Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage8
- Abstract Views8
Article Description
Metro (subway) systems are becoming overcrowded in some of China’s mega-cities, such as Beijing, Shanghai, and Guangzhou. As many passengers are unable to board trains on an overcrowded metro network during peak periods, some of them are willing to spend more time and energy by traveling backwards in order to secure a seat or even room for standing. Traditional studies on travel behavior analysis and transit assignment models seldom deal with this situation. We propose a methodology including the affinity propagation cluster method with between-within-proportion (BWP) index and an adaptive “0-1” model named the traveling backwards model (TBM) to identify the phenomenon of “traveling backwards” and to reassign passenger flows on a metro network using automatic fare collection (AFC) data and actual train diagrams. As a numerical example, this integrated approach is applied to the Beijing metro system. Our research shows that the affinity propagation cluster method with BWP index and implicit enumeration algorithm for TBM work well. TBM is a good replacement for the existing assignment model and travel behavior analysis, especially for those mega-cities’ networks in peak hours.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know