An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network
2019
- 13Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage13
- Abstract Views13
Article Description
A well designed train timetable should fully utilize the limited infrastructure and rolling stock resources to maximize operators’ profits and passenger travel demand satisfaction. Thus, an internally coherent scheduling process should consider the three main aspects: (1) dynamic choice behaviors of passengers so as to evaluate and calculate the impact of variable passenger demand to (2) underlying train service patterns and detailed timetables, which in turn are constrained by (3) infrastructure and rolling stock capacity. This paper aims to develop an integrated demand/service/resource optimization model for managing the above-mentioned three key decision elements with a special focus on passengers’ responses to time-dependent service interval times or frequencies. The model particularly takes into account service-sensitive passenger demand as internal variables so that one can accurately map passengers to train services through a representation of passenger carrying states throughout a team of trains. The added state dimension leads to a linear integer multi-commodity flow formulation in which three closely interrelated decision elements, namely passengers’ response to service interval times, train stopping pattern planning and timetabling for conflict detecting and resolving are jointly considered internally. By using a Lagrangian relaxation solution framework to recognize the dual costs of both passenger travel demand and limited resources of track and rolling stock, we transfer and decompose the formulation into a novel team-based train service search sub-problem for maximizing the profit of operators. The sub-problem is solvable efficiently by a forward dynamic programming algorithm across multiple trains of a team. Numerical experiments are conducted to examine the efficiency and effectiveness of the dual and primal solution search algorithms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know