Optimal synchronization and coordination of actual passenger-rail timetables
2019
- 6Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage6
- Abstract Views6
Article Description
This study provides a novel solution for the synchronized and coordinated railway scheduling optimization (SCSO) problem by the determination of the departure times of a public transit network. Railway timetable optimization is dealt with maximizing the number of synchronized meetings to allow for smooth transfers at interchanges. The developed model uses binary variables to record the number of synchronized meetings considering the importance of transfer stations and rail lines without the need to apply the modeling of passenger assignments. The model allows for a permissible and flexible transfer waiting time for making a connection between rails instead of the commonly used and assumed values. The solution of the mixed-integer programing problem of larger-sized railway networks is based on a synchronized and coordinated scheduling optimization genetic algorithm (SCSO-GA) with a local search strategy (LSS). This solution method is proved to be more efficient and accurate than the CPLEX solver. In addition it is proven to be a periodic event-scheduling problem (PESP) solver. The model is tested computationally on the Beijing urban rail transit network. The results demonstrate the advantage of the novel approach over other methods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know