PlumX Metrics
Embed PlumX Metrics

Applying Deep Neural Networks for Predicting Dark Triad Personality Trait of Online Users

International Conference on Information Networking, ISSN: 1976-7684, Vol: 2020-January, Page: 102-105
2020
  • 14
    Citations
  • 15
    Usage
  • 31
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

In the recent times, the social networking sites act as a rich source of information, which is shared among online users, who post comments and express their opinions in the form of likes and dislikes. Such content reflects important clues about the personality and behavior of the online community. The dark triad personality traits, such as the psychopathic behavior of individuals, can be detected using computational models. The earlier studies on the dark triad (psychopath) prediction exploit traditional machine learning techniques with limited dataset size. Therefore, it is required to develop an advanced deep neural network-based technique. In this work, we implement a deep neural network model, namely BILSTM for the efficient prediction of dark triad (psychopath) personality traits regarding online users. Experimental results depict that the proposed model attained an improved AUC (0.82) when compared to the baseline study.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know