A comparison of hyporheic transport at a constructed stream restoration structure and natural riffle feature, West Branch Owego Creek, New York, USA

Publication Year:
Usage 72
Downloads 55
Abstract Views 17
Repository URL:
http://ir.uiowa.edu/etd/3192; https://ir.uiowa.edu/cgi/viewcontent.cgi?article=6522&context=etd
Smidt, Samuel J.
The University of Iowa; University of Iowa
electrical resistivity; hydrogeophysics; hyporheic zone; solute tracer; stream restoration; Geology
thesis / dissertation description
While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce hyporheic exchange comparable to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, I am able to quantify hyporheic extent and transport beneath the cross-vane structure and riffle. I interpret from the geophysical data that the cross-vane and natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-hr injection was detected along flowpaths for 4.6-hrs at the cross-vane and 4.2-hrs at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than at the riffle. I compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and riffle and significant differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and residence times to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize those benefits.