Super-Resolution Reconstruction Algorithm To MODIS Remote Sensing Images

Citation data:

The Computer Journal, ISSN: 0010-4620, Vol: 52, Issue: 1, Page: 90-100

Publication Year:
Usage 1
Abstract Views 1
Captures 33
Readers 33
Citations 53
Citation Indexes 53
Repository URL:
Shen, Huanfeng; Ng, Michael K.; Li, Pingxiang; Zhang, Liangpei
Oxford University Press (OUP); Oxford University Press
Computer Science; Huber prior; L1 norm data fidelity; MODIS images; Outliers; Super-resolution
article description
In this paper, we propose a super-resolution image reconstruction algorithm to moderate-resolution imaging spectroradiometer (MODIS) remote sensing images. This algorithm consists of two parts: registration and reconstruction. In the registration part, a truncated quadratic cost function is used to exclude the outlier pixels, which strongly deviate from the registration model. Accurate photometric and geometric registration parameters can be obtained simultaneously. In the reconstruction part, the Lnorm data fidelity term is chosen to reduce the effects of inevitable registration error, and a Huber prior is used as regularization to preserve sharp edges in the reconstructed image. In this process, the outliers are excluded again to enhance the robustness of the algorithm. The proposed algorithm has been tested using real MODIS band-4 images, which were captured in different dates. The experimental results and comparative analyses verify the effectiveness of this algorithm. © The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.