Noncommutative Atiyah-Patodi-Singer boundary conditions and index pairings in KK-theory

Citation data:

Journal fur die Reine und Angewandte Mathematik, ISSN: 0075-4102, Vol: 2010, Issue: 643, Page: 59-109

Publication Year:
2010
Usage 187
Abstract Views 99
Downloads 81
Full Text Views 7
Captures 5
Readers 3
Exports-Saves 2
Citations 5
Citation Indexes 5
Repository URL:
http://ro.uow.edu.au/eispapers/690; https://works.bepress.com/arennie/14
DOI:
10.1515/crelle.2010.045
Author(s):
Carey, Alan L; Phillips, John; Rennie, Adam C
Publisher(s):
Walter de Gruyter GmbH
Tags:
Mathematics; Engineering; Science and Technology Studies
article description
We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a noncommutative geometry setting framed in terms of Kasparov modules. We use a mapping cone construction to relate odd index pairings to even index pairings with APS boundary conditions in the setting of KK-theory, generalising the commutative theory. We find that Cuntz-Krieger systems provide a natural class of examples for our construction and the index pairings coming from APS boundary conditions yield complete K-theoretic information about certain graph C□-algebras. © Walter de Gruyter Berlin . New York 2010.