The Effect of Gonadal Hormones on Agonistic Behavior in Previously Defeated Female and Male Syrian Hamsters

Publication Year:
Usage 290
Downloads 227
Abstract Views 63
Repository URL:
Solomon, Matia B
Social Stress; Submission; Hypothalamic-Pituitary Adrenal Axis (HPA-axis); Social Defeat; Aggression; Estrous cycle; Estradiol; Psychology
thesis / dissertation description
Following social defeat, male hamsters exhibit behavioral changes characterized by a breakdown of normal territorial aggression and an increase in submissive/defensive behaviors in the presence of a non-aggressive intruder (NAI). We have termed this phenomenon conditioned defeat (CD). By contrast, only a small subset of defeated females exhibit submissive/defensive behavior in the presence of a NAI. We hypothesized that fluctuations in gonadal hormones might contribute to differences in the display of submissive behavior in intact female hamsters. Following social defeat, proestrous females (higher endogenous estradiol) were more likely to display conditioned defeat compared with diestrous 1 (lower endogenous estradiol) females. This finding suggests that there is an estrous cycle-dependent fluctuation in the display of CD in female hamsters and suggests that increased estradiol might contribute to increased submissive behavior. We then demonstrated that ovariectomized females given estradiol prior to CD testing exhibited significantly higher submissive behavior in the presence of a NAI suggesting that estradiol increases the expression of CD in female hamsters. We have also shown that castrated males that were singly housed for four weeks displayed significantly more submissive behavior than did their intact counterparts. Interestingly, castrated and intact males that were singly housed for 10 days prior to behavioral testing displayed similar behavior during CD testing. Together these data suggest that androgens and isolation modulate the display of CD in male hamsters. Finally, we examined brain activation following CD testing in defeated males and females (in diestrus 1 and proestrus). Defeated male and proestrous females exhibited increased Fos activation in the dorsal lateral septum and hypothalamic paraventricular nucleus relative to defeated diestrous 1 females. Diestrous 1 females exhibited increased Fos expression in the lateral bed nucleus of the stria terminalis compared with both defeated groups. Collectively, these data suggest that gonadal hormones and duration of individual housing modulate the display of CD in female and male hamsters and that those animals which display CD exhibit differences in patterns of neuronal activation than do those that do not display CD.