Preheating in derivatively coupled inflation models

Citation data:

Journal of Cosmology and Astroparticle Physics, ISSN: 1475-7516, Vol: 2008, Issue: 04, Page: 036

Publication Year:
2008
Usage 79
Downloads 75
Abstract Views 4
Captures 8
Readers 8
Citations 10
Citation Indexes 10
arXiv Id:
0707.2177
DOI:
10.1088/1475-7516/2008/04/036
Repository URL:
https://surface.syr.edu/phy/227; http://arxiv.org/abs/0707.2177
Author(s):
Armendariz-Picon, Christian; Trodden, Mark; West, Eric J.
Publisher(s):
IOP Publishing
Tags:
Physics and Astronomy; High Energy Physics - Phenomenology; Astrophysics; Physics
article description
We study preheating in theories where the inflaton couples derivatively to scalar and gauge fields. Such couplings may dominate in, for example, models of natural inflation, in which the flatness of the inflaton potential is related to an approximate shift symmetry of the inflaton. We compare our results with previously studied models with non-derivative couplings. For sufficiently heavy scalar matter, parametric resonance is ineffective in reheating the universe, because the couplings of the inflaton to matter are very weak. If scalar matter fields are light, derivative couplings lead to long-wavelength instabilities that drive matter fields to non-zero expectation values. In this case however, long-wavelength fluctuations of the light scalar are produced during inflation, leading to a host of cosmological problems. In contrast, axion-like couplings of the inflaton to a gauge field do not lead to production of long-wavelength fluctuations during inflation. However, again because of the weakness of the couplings to the inflaton, parametric resonance is not effective in producing gauge field quanta. © IOP Publishing Ltd.