A Case Study in Multiperiod Portfolio Optimization: A Classic Problem Revisited
SSRN, ISSN: 1556-5068
2020
- 2,034Usage
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Conventional wisdom holds that multiperiod portfolio optimization problems are best, if not only, solved by dynamic programming. But dynamic programming suffers from the curse of dimensionality whereby optimization becomes intractable as time horizon and number of assets increase, thereby limiting its practical applications. In this paper I show for a classic multiperiod investment problem that a feed-forward, open-loop procedure, amenable to solution by conventional methods (e.g. calculus of variations) and not subject to the curse of dimensionality, generates `here and now' portfolios identical to those generated by the dynamic programming approach. The analytic results in this paper demonstrate that for this classic problem a feed forward approach is not inferior to the more common backward induction approach, suggesting that an `open-loop with recourse' process is a viable closed-loop approach for some practically useful multiperiod investment problems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85110269201&origin=inward; http://dx.doi.org/10.2139/ssrn.3697948; https://www.ssrn.com/abstract=3697948; https://dx.doi.org/10.2139/ssrn.3697948; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3697948; https://ssrn.com/abstract=3697948
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know