Enhanced Lithium Storage Capacity of a Tetralithium 1,2,4,5-Benzenetetracarboxylate (LiCHO) Salt Through Crystal Structure Transformation.

Citation data:

ACS applied materials & interfaces, ISSN: 1944-8252, Vol: 10, Issue: 20, Page: 17183-17194

Publication Year:
2018
Captures 4
Readers 4
Repository URL:
http://scholarworks.unist.ac.kr/handle/201301/24358
PMID:
29708718
DOI:
10.1021/acsami.8b03323
Author(s):
Cahyadi, Handi Setiadi; William, Wendy; Verma, Deepak; Kwak, Sang Kyu; Kim, Jaehoon
Publisher(s):
American Chemical Society (ACS); AMER CHEMICAL SOC
Tags:
Materials Science; density fluctuation theory; excess capacity; Li4C10H2O8; lithium-ion batteries; organic electrode materials; solvothermal
article description
Because of their low price, design flexibility, and sustainability, organic-based electrode materials are considered one of the most promising next-generation alternatives to inorganic materials in Li-ion batteries. However, a clear understanding of the changes in the molecular crystal structure during Li-ion insertion/extraction and its relationship to excess capacity (over theoretical capacity) is still lacking. Herein, the tetralithium 1,2,4,5-benzenetetracarboxylate (LiCHO, LiBTC) salt was prepared using a simple ion-exchange reaction at room temperature and under solvothermal conditions (100 °C). The solvothermally synthesized salt (LiBTC-S) exhibited a well-ordered nanosheet morphology, whereas the room-temperature salt (LiBTC-R) was comprised of irregularly shaped particles. During the cycling of LiBTC-S, molecular rearrangement occurred to reduce the stress caused by repeated Li-ion insertion/extraction, resulting in a change in the crystal structure from triclinic to monoclinic and an increased free volume. This contributed to an increase in the reversible capacity to 1016 mAh g during the initial 25 cycles at 0.1 A g, and finally the capacity stabilized at ca. 600 mAh g after 100 cycles, which is much higher than its theoretical capacity (234 mAh g). Compared with LiBTC-R, LiBTC-S delivered a higher reversible capacity of 190 mAh g at a high current density of 2 A g, with an excellent long-term cyclability of up to 1000 cycles, which was attributed to the straight free volume columns and the low-charge-transfer limitation.