Subthreshold Transistors: Concept and Technology
Advanced Ultra Low-Power Semiconductor Devices: Design and Applications, Page: 1-27
2023
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Book Chapter Description
The continuous downscaling of Si MOS transistors facilitated technology to follow Moor’s Law which states that transistor density doubles every 18 months. However, the fundamental material limitation of Si, popularly known as Boltzmann’s tyranny, sets a limit on the subthreshold swing up to 60mV/decade, which means the minimum voltage required for a decade of change in the current is 60 mV. In addition, the various short channel effects, including V roll-off, increasing I, DIBL, and GIDL, also increase with downscaling. These two effects decrease the I/I ratio and increase the power dissipation in the transistor, which is very significant, particularly in sub-nanometre technology. So, it is pertinent to think about applications where subthreshold current can be utilized, particularly in ultra-low power and very low-power applications. In the past few years, subthreshold region operation has gained attention and encouraging results have been reported. The presented chapter deals with the scope, challenges, and possible solutions forsubthreshold transistors. It also presents developments in the recent past, new devices, structures, and materials with better subthreshold performance, such as high-k transistors, transistors on SOI, thin film transistors, multi-gate transistors, FinFETs, gate-all-around transistors, nanowire, Nano sheet, and TFETs. Recently, NCFET also reported it promises to improve subthreshold performance without changing the conventional structure of the transistor, which is encouraging.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know