On the Properties of Nanoporous SiO Films for Single Layer Antireflection Coating
Advanced Engineering Materials, ISSN: 1527-2648, Vol: 21, Issue: 6
2019
- 22Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Single layer antireflection coatings (SLAR) consisting of nanoporous silica (NP SiO) films are developed by selective chemical etching of atomic layer deposited (ALD) AlO:SiO composite films. The reflective index of the final NP SiO film is finely adjusted from 1.132 to 1.400 at 600 nm wavelength by applying an appropriate ratio in the composite. To meet the requirements of the SLAR coatings from the deep UV (DUV) to the near IR (NIR) spectral range, the film thickness is controlled with nanometer precision by the ALD process. The SLAR are simultaneously applied on both sides of flat or highly curved substrates. Transmittance values above 99.4% are achieved even at a wavelength of 193 nm on fused silica substrates. Various characterization methods demonstrate the advantages of these SLAR with regard to impurities, optical losses, laser induced damage threshold (LIDT) properties, and surface super-hydrophilicity. The absorption losses at 193 nm wavelength as determined by laser induced deflection measurements amount to approximately 200 ppm, and to approximately 2 ppm at a wavelength of 1064 nm, while the scattering losses are around 30 ppm at 532 nm wavelength for quarter-wave layers. The LIDT values at 1064 nm are in the range of 93 J cm being close to the values measured on the uncoated substrate.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know