Degradable Silk-Based Subcutaneous Oxygen Sensors
Advanced Functional Materials, ISSN: 1616-3028, Vol: 32, Issue: 27
2022
- 21Citations
- 26Captures
- 8Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Scientists create tattoo-like sensors that reveal blood oxygen levels
Silk-based material under skin changes color in response to oxygen, and in the future might be adapted to track glucose and other blood components.
Most Recent News
The Dawn of Biological Hybrid Transistors
A team at Tufts University’s Silklab has developed transistors using biological silk as the insulating material, allowing them to interact with the environment like living
Article Description
Continuous monitoring of biochemical analytes like oxygen is of interest in biomedicine to provide insight into physiology and health. Silk-protein biomaterials are particularly useful as the scaffold material in oxygen sensors due to silk's unique amphiphilic chemistry, which promotes noncovalent stabilization of the protein and additives in aqueous environments. Silk films containing a water-insoluble oxygen-sensing chromophore, Pd (II) tetramethacrylated benzoporphyrin (PdBMAP), are evaluated as optical oxygen sensors in vitro and in vivo. These silk-chromophore composites are stabilized by the self-assembled, physically crosslinked protein network. The deaerated phosphorescence lifetime (τ ≈300 µs) of the chromophore in vitro is quenched to 50% of its initial value at ≈31 µm dissolved oxygen, indicating sensing functionality within physiological ranges of oxygen. In vitro enzymatic degradation of the silk films with and without the chromophore is demonstrated. The silk-chromophore composite films are cytocompatible in vitro, biocompatible in vivo upon implantation in rats, and displayed mechanical properties suitable for subcutaneous implantation. Further, the films maintain oxygen-sensing function in vivo and demonstrate real-time sensing capabilities throughout various physiological states (i.e., hyperoxia, normoxia, and hypoxia).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know