A Bio-inspired Platform to Modulate Myogenic Differentiation of Human Mesenchymal Stem Cells Through Focal Adhesion Regulation
Advanced Healthcare Materials, ISSN: 2192-2659, Vol: 2, Issue: 3, Page: 442-449
2013
- 43Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations43
- Citation Indexes43
- 43
- CrossRef39
- Captures43
- Readers43
- 43
Article Description
The use of human mesenchymal stem cells (hMSCs) in cardiac-tissue engineering has gained widespread attention and many reports have shown that matrix compliance, micro/nano-patterns could be some of the important biophysical cues that drive hMSCs differentiation. Regardless of the type of biophysical induction cues, cells mainly explore their environment via focal adhesion (FA) and FA plays an important role in many cellular behaviours. Therefore, it is hypothesized that FA modulation through materials manipulation could be an important cue for modulation that would result in the stem cell lineage commitment. In this work, the FA of hMSCs is modulated by a novel microcontact printing method using polyvinyl alcohol as a trans-print media which can successfully print proteins on soft polydimethylsiloxane (PDMS). The FA is successfully modified into dense FA and elongated FA by micropatterning square and rectangular patterns on 12.6 kPa PDMS respectively. Additionally, the combined effects of stiffness of PDMS substrates (hard (308 kPa), intermediate (12.6 kPa)) and FA patterning on hMSCs differentiation are studied. The results indicate that dense FA does not induce myogenesis while elongated FA can promote cytoskeleton alignment and further myogenesis on PDMS with intermediate stiffness of 12.6 kPa. However, on stiff substrate (308 kPa), with or without patterns, the cytoskeleton alignment and myogenesis are not obvious. This demonstrates for the first time that it is possible to induce the differentiation of hMSCs by regulating the FA using a materials platform even in the absence of any biochemical factors. It also shows that there is a synergistic effect between FA regulation and matrix stiffness that results in a more specific and higher up-regulated myogenesis. This platform presents a new chemical/biological-free method to engineer the myogenic differentiation of hMSCs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know