Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors
Advanced Materials, ISSN: 1521-4095, Vol: 34, Issue: 12, Page: e2110013
2022
- 117Citations
- 76Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations117
- Citation Indexes117
- 117
- CrossRef49
- Captures76
- Readers76
- 76
Article Description
Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10 mWh cm), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know