Facile Access to High Solid Content Monodispersed Microspheres via Dual-Component Surfactants Regulation toward High-Performance Colloidal Photonic Crystals
Advanced Materials, ISSN: 1521-4095, Vol: 36, Issue: 24, Page: e2312879
2024
- 26Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Monodispersed microspheres play a major role in optical science and engineering, providing ideal building blocks for structural color materials. However, the method toward high solid content (HSC) monodispersed microspheres has remained a key hurdle. Herein, a facile access to harvest monodispersed microspheres based on the emulsion polymerization mechanism is demonstrated, where anionic and nonionic surfactants are employed to achieve the electrostatic and steric dual-stabilization balance in a synergistic manner. Monodispersed poly(styrene-butyl acrylate-methacrylic acid) colloidal latex with 55 wt% HSC is achieved, which shows an enhanced self-assembly efficiency of 280% compared with the low solid content (10 wt%) latex. In addition, Ag-coated colloidal photonic crystal (Ag@CPC) coating with near-zero refractive index is achieved, presenting the characteristics of metamaterials. And an 11-fold photoluminescence emission enhancement of CdSe@ZnS quantum dots is realized by the Ag@CPC metamaterial coating. Taking advantage of high assembly efficiency, easily large-scale film-forming of the 55 wt% HSC microspheres latex, robust Ag@CPC metamaterial coatings could be easily produced for passive cooling. The coating demonstrates excellent thermal insulation performance with theoretical cooling power of 30.4 W m, providing practical significance for scalable CPC architecture coatings in passive cooling.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know