Nanostructured Surfaces as Plasmonic Biosensors: A Review
Advanced Materials Interfaces, ISSN: 2196-7350, Vol: 9, Issue: 2
2022
- 61Citations
- 107Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Conventional laboratory techniques exhibit impressive sensing performance and still constitute an irreplaceable tool in bioanalytics. Nevertheless, high costs, time consumption, and need for well-equipped laboratories and skilled personnel make highly desirable to explore novel strategies to carry out biochemical analyses. In this regard, biosensor-based methods represent a promising approach to keep affordability and rapidity, thus they can inherently pave the way to point of care tests and high-throughput analysis. Regrettably, most of them suffer from fabrication and biofunctionalization complexity, and poor sensitivities and reliability. Therefore, their adoption as a real alternative to the gold standards is still far from being achieved. However, the massive research on plasmonic nanostructures is revealing their potentialities in sensing field, since they own appealing performances resulting from the plasmon-related effects and can be easily adapted to a large variety of applications. In this review, a summary of plasmonic biosensors recently devised is reported. Though many nanostructures fit for shared applications, for clarity they are classified into two main categories: i) biosensors whose sensing parameters are plasmon-related observables (localized, coupled, lattice surface plasmon resonances) and ii) biosensors in which the nanostructure acts as amplifier for an external signal (surface-enhanced Raman and infrared spectroscopies and plasmon-enhanced fluorescence).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know