Improvement of thermal stability and gamma-ray absorption in microwave absorbable poly(methyl methacrylate)/graphene nanoplatelets nanocomposite
Journal of Applied Polymer Science, ISSN: 1097-4628, Vol: 138, Issue: 36
2021
- 12Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The graphene nanofiller (2 wt%) was dispersed in poly(methyl methacrylate) by in situ polymerization method. The optimum high frequency (microwave) absorption was evaluated at X-band due to changes in the scattering parameters (determined by using a vector network analyzer). The slight improvement has been attained in gamma attenuation coefficient of the polymer nanocomposite by using gamma transmission technique. The addition of graphene nanoplatelets (2 wt%) resulted in a thermal improvement from 196.73 to 243.00°C (with 5% weight loss) in TGA analysis. The graphene nanoplatelets provided an optimum decrease in scattering of the microwaves due to the elimination of the defects and the prevention of the agglomeration of the graphene nanoplates. The improvement of microwave absorption (between 8 and 12 GHz) suggested that the nanocomposite was a suitable candidate as a microwave absorbing material. This multipurpose nanocomposite has provided thermal stability and it has ensured the optimum gamma-ray and microwave absorption depending on the development of the structural properties. The development of these physical characteristics has enabled to improve the electrical conductivity as a result of the progress in the structural properties.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know