Role of ionic crystals as interfacial layers in metal-semiconductor junction
Applied Research, ISSN: 2702-4288, Vol: 3, Issue: 6
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Optoelectronic devices performance is governed by the band alignment nature in heterojunctions. Interfacial Layers (ILs) play an immense role in charge carrier-selectivity and their transport behavior. Considering the investigations on a wide array of solid-state surfaces and heterojunctions performed both experimentally and theoretically, we found that the electron localizability, which is quantifiable through the bandgap energy and band width, affects the surface properties of crystals and hence the electronic properties of the interfaces. In combination with other observations, a strategy for contact design is developed for enhancing charge carrier transport across the boundaries and the interfaces, one can optimize stack structures with IL by maximizing their respective transport mechanism, similar to what has been done with silicon solar cells by doping. In this case, charge carrier transport across the interface can be maximized by making the depletion region width smaller without altering the heterojunction barrier's height.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know