Pharmacological characterization of STKR, an insect G protein-coupled receptor for tachykinin-like peptides
Archives of Insect Biochemistry and Physiology, ISSN: 0739-4462, Vol: 48, Issue: 1, Page: 39-49
2001
- 25Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
STKR is a G protein-coupled receptor that was cloned from the stable fly, Stomoxys calcitrans. Multiple sequence comparisons show that the amino acid sequence of this insect receptor displays several features that are typical for tachykinin (or neurokinin, NK) receptors. Insect tachykinin-related peptides, also referred to as "insectatachykinins," produce dose-dependent calcium responses in Drosophila melanogaster Schneider 2 cells, which are stably transfected with this receptor (S2-STKR). These responses do not depend on the presence of extracellular Ca-ions. A rapid agonist-induced increase of inositol 1,4,5-trisphosphate (IP) is observed. This indicates that the agonist-induced cytosolic Ca-rise is caused by a release of Caions from intracellular calcium stores. The pharmacology of STKR is analyzed by studying the effects of the most important antagonists for mammalian NK-receptors on STKR-expressing insect cells. The results show that spantide II, a potent substance P antagonist, is a real antagonist of insectatachykinins on STKR. We have also tested the activity of a variety of natural insectatachykinin analogs by microscopic image analysis of calcium responses in S2-STKR cells. At a concentration of 1 μM, almost all natural analogs produce a significant calcium rise in stable S2-STKR cells. Interestingly, Stc-TK, an insectatachykinin that was recently discovered in the stable fly (S. calcitrans), also proved to be an STKR-agonist. Stc-TK, a potential physiological ligand for STKR, contains an Ala-residue (or A) instead of a highly conserved Gly-residue (or G). Arch. Insect Biochem. Physiol. 48:39-49, 2001. © 2001 Wiley-Liss, Inc.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know