Plasma membrane oxidoreductase activity in cultured cells in relation to mitochondrial function and oxidative stress.
BioFactors (Oxford, England), ISSN: 0951-6433, Vol: 20, Issue: 4, Page: 251-258
2004
- 7Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef7
- Captures20
- Readers20
- 20
Article Description
Dichlorophenol indophenol (DCIP) reduction by intracellualr pyridine nucleotides was investigated in two different lines of cultured cells characterized by enhanced production of reacive oxygen species (ROS) with respect to suitable controls. The first line denominated XTC-UC1 was derived from a metastasis of an oxyphilic thyroid tumor characterized by mitochondrial hyperplasia and compared with a line (B-CPAP) derived from a papillary thyroid carcinoma with normal mitochondrial mass. The second line (170 MN) was a cybrid line derived from rho0 cells from an osteosarcoma line (143B) fused with platelets from a patient with a nucleotide 9957 mutation in mitochondrial DNA (encoding for cytochrome c oxidase subunit III) in comparison with the parent 143B line. The experimental lines had no major decreases of electron transfer activities with respect to the controls; both of them, however, exhibited an increased peroxide production. The XTC-UC1 cell line exhibited enhanced activity with respect to control of dicoumarol-sensitive DCIP reduction, identified with membrane bound DT-diaphorase, whereas dicoumarol insensitive DCIP reduction was not significantly changed. On the other hand the mtDNA mutated cybrids exhibited a strong increase of both dicoumarol sensitive and insensitive DCIP reduction. The results suggest that enhanced oxidative stress and not deficient respiratory activity per se is the stimulus triggering over-expression of plasma membrane oxidative enzymes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=15944387042&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/15706061; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=13444261073&origin=inward; http://dx.doi.org/10.1002/biof.5520200408; https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.5520200408; https://dx.doi.org/10.1002/biof.5520200408
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know