Machine Learning techniques in breast cancer prognosis prediction: A primary evaluation
Cancer Medicine, ISSN: 2045-7634, Vol: 9, Issue: 9, Page: 3234-3243
2020
- 60Citations
- 123Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations60
- Citation Indexes60
- 60
- CrossRef50
- Captures123
- Readers123
- 123
Article Description
More than 750 000 women in Italy are surviving a diagnosis of breast cancer. A large body of literature tells us which characteristics impact the most on their prognosis. However, the prediction of each disease course and then the establishment of a therapeutic plan and follow-up tailored to the patient is still very complicated. In order to address this issue, a multidisciplinary approach has become widely accepted, while the Multigene Signature Panels and the Nottingham Prognostic Index are still discussed options. The current technological resources permit to gather many data for each patient. Machine Learning (ML) allows us to draw on these data, to discover their mutual relations and to esteem the prognosis for the new instances. This study provides a primary evaluation of the application of ML to predict breast cancer prognosis. We analyzed 1021 patients who underwent surgery for breast cancer in our Institute and we included 610 of them. Three outcomes were chosen: cancer recurrence (both loco-regional and systemic) and death from the disease within 32 months. We developed two types of ML models for every outcome (Artificial Neural Network and Support Vector Machine). Each ML algorithm was tested in accuracy (=95.29%-96.86%), sensitivity (=0.35-0.64), specificity (=0.97-0.99), and AUC (=0.804-0.916). These models might become an additional resource to evaluate the prognosis of breast cancer patients in our daily clinical practice. Before that, we should increase their sensitivity, according to literature, by considering a wider population sample with a longer period of follow-up. However, specificity, accuracy, minimal additional costs, and reproducibility are already encouraging.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know