Hydridostannylene Derivatives of Magnesium and Calcium
Chemistry - A European Journal, ISSN: 1521-3765, Page: e202404416
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Reactions of a m-terphenylhydridostannylene with β-diketiminato magnesium and calcium hydrides provide bis-μ-hydrido species, the heterobimetallic constitutions of which are maintained after the addition of THF donor solvent. In both cases, reactions with hex-1-ene result in the formation of tetravalent organostannyl alkaline earth derivatives. Whereas the magnesium reagent undergoes facile twofold addition, the calcium-centered process is arrested after a single alkene reduction event. This contrasting behavior is assessed to result from the heavier alkaline earth element's ability to form a persistent polyhapto interaction with an arene substituent of the m-terphenyl ligand.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know