Improving ROUGE-1 by 6%: A novel multilingual transformer for abstractive news summarization
Concurrency and Computation: Practice and Experience, ISSN: 1532-0634, Vol: 36, Issue: 20
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Natural language processing (NLP) has undergone a significant transformation, evolving from manually crafted rules to powerful deep learning techniques such as transformers. These advancements have revolutionized various domains including summarization, question answering, and more. Statistical models like hidden Markov models (HMMs) and supervised learning have played crucial roles in laying the foundation for this progress. Recent breakthroughs in transfer learning and the emergence of large-scale models like BERT and GPT have further pushed the boundaries of NLP research. However, news summarization remains a challenging task in NLP, often resulting in factual inaccuracies or the loss of the article's essence. In this study, we propose a novel approach to news summarization utilizing a fine-tuned Transformer architecture pre-trained on Google's mt-small tokenizer. Our model demonstrates significant performance improvements over previous methods on the Inshorts English News dataset, achieving a 6% enhancement in the ROUGE-1 score and reducing training loss by 50%. This breakthrough facilitates the generation of reliable and concise news summaries, thereby enhancing information accessibility and user experience. Additionally, we conduct a comprehensive evaluation of our model's performance using popular metrics such as ROUGE scores, with our proposed model achieving ROUGE-1: 54.6130, ROUGE-2: 31.1543, ROUGE-L: 50.7709, and ROUGE-LSum: 50.7907. Furthermore, we observe a substantial reduction in training and validation losses, underscoring the effectiveness of our proposed approach.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know