Self-tuning PI control using adaptive PSO of a web transport system with overlapping decentralized control
Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), ISSN: 0424-7760, Vol: 184, Issue: 1, Page: 56-65
2013
- 16Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Web transport systems for transporting films, textile material, paper, etc., are usually large-scale systems. The velocity and the tension of the web are controlled by dividing the systems into several subsystems in which strong coupling exists between the velocity and tension control. A self-tuning PI (STPI) controller with an estimator based on a novel adaptive particle swarm optimization method is constructed, and it is applied for controlling an actual web transport system. The controllers are designed on the basis of the methodology of the overlapping decentralized control by taking into consideration online executions performed by a general computer. The effectiveness of the constructed control system is verified on the basis of several experimental results obtained by using an actual experimental web transport system. © 2013 Wiley Periodicals, Inc.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know