Surface segregation in SnO-FeO nanopowders and effects in mössbauer spectroscopy
European Journal of Inorganic Chemistry, ISSN: 1434-1948, Vol: 2005, Issue: 11, Page: 2134-2138
2005
- 52Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
SnO-FeO nanopowders prepared by the polymeric precursor method were studied by combined conventional and high-resolution techniques. The powders treated at 500°C were analyzed by EDS local probe associated with HRTEM to directly detect surface segregation of Fe ions onto SnO nanoparticles over a broad range of concentrations. The segregation of these ions controls the system microstructure by changing the surface energies and acting as nucleation sites for the formation of a Fe oxide phase (magnetite) at high Fe concentrations. A technologically interesting core-shell-type particle structure, with a magnetic shell and semiconductor core, was observed for the first time. The influence of the segregated Fe ions in Mössbauer spectra is also addressed as a new proposal for the interpretation of the effects of composition changes in both the bulk and at the interface of particles. In this proposal, the two observed sites in Mössbauer spectra would be independently related to bulk-substituted and surface-segregated Fe ions. © Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know