Modification of the Spin Transition Properties in Hetero-Anionic Iron(II)-Triazole Complexes
European Journal of Inorganic Chemistry, ISSN: 1099-0682, Vol: 27, Issue: 35
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The phenomenon which is called spin crossover is known to occur in some coordination compounds with an octahedral ligand field and electron configurations from 3d to 3d. Thereby, a reversible transition between spin states (high spin and low spin state) is possible, through several external stimuli. Iron(II) triazole complexes exhibit this phenomenon at a wide range of temperatures depending on the ligands and anions used. For this reason, they are often considered for several possible practical applications. It is also possible to combine ligands or anions to modify the transition temperature. The latter of which was rarely discussed in the past. In this study we synthesized a series of iron(II)-4-Aminotriazole complexes, with different ratios of chloride- and tetrafluoroborate-anions, of the formula [Fe(Atrz)]Cl(BF). We show that the combination of these anions leads to transition temperatures between those of their corresponding pure anion complexes. We furthermore present that a simple modification of the synthesis leads to a possible easy way of fine-tuning transitions temperatures.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know