Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes
Electrophoresis, ISSN: 1522-2683, Vol: 34, Issue: 19, Page: 2787-2798
2013
- 59Citations
- 121Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations59
- Citation Indexes59
- 59
- CrossRef19
- Captures121
- Readers121
- 121
Review Description
It is increasingly evident that the gut microbiota is involved in the regulation of multiple mammalian metabolic pathways through a series of interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, brain, and other organs. Correlation of the metabotypes with the gut microbial profiles derived from culture-independent molecular techniques is increasingly useful for deciphering inherent and intimate host-microbe relationships. Real-time analysis of the small molecule metabolites derived from gut microbial-host co-metabolism is essential for understanding the metabolic functions of the gut microbiome and has tremendous implications for personalized healthcare strategies. Metabolomics, an array of analytical techniques that includes high resolution NMR spectroscopy and chromatography-MS in conjunction with chemometrics and bioinformatics tools, enables characterization of the metabolic footprints of mammalian hosts that correlate with the microbial community in the intestinal tract. The metabolomics approach provides important information of a complete spectrum of metabolites produced from the gut microbial-mammalian co-metabolism and is improving our understanding of the molecular mechanisms underlying multilevel host-microbe interactions. In this review, the interactions of gut microbiota with their host are discussed and some examples of NMR- or MS-based metabolomics applications for characterizing the metabolic footprints of gut microbial-host co-metabolism are described. Advances in the metabolomic analysis of bile acids, short-chain fatty acids, and choline metabolism are also summarized. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know