TBDLNet: A network for classifying multidrug-resistant and drug-sensitive tuberculosis
Engineering Reports, ISSN: 2577-8196, Vol: 6, Issue: 8
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes applying a novel deep-learning model, TBDLNet, to recognize CT images to classify multidrug-resistant and drug-sensitive tuberculosis automatically. The pre-trained ResNet50 is selected to extract features. Three randomized neural networks are used to alleviate the overfitting problem. The ensemble of three RNNs is applied to boost the robustness via majority voting. The proposed model is evaluated by five-fold cross-validation. Five indexes are selected in this paper, which are accuracy, sensitivity, precision, F1-score, and specificity. The TBDLNet achieves 0.9822 accuracy, 0.9815 specificity, 0.9823 precision, 0.9829 sensitivity, and 0.9826 F1-score, respectively. The TBDLNet is suitable for classifying multidrug-resistant tuberculosis and drug-sensitive tuberculosis. It can detect multidrug-resistant pulmonary tuberculosis as early as possible, which helps to adjust the treatment plan in time and improve the treatment effect.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know