Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data
Engineering Reports, ISSN: 2577-8196, Vol: 7, Issue: 1
2025
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Automating mineral delineation and rock type analysis using remote sensing imaging data is a critical application of machine learning. Traditional machine learning methods often struggle with accuracy and precise map generation. This study aims to enhance performance through a refined deep learning model. In this work, we present a deep learning pipeline to map the mineral deposits in the study area. Initially, we apply a deep convolutional neural network (CNN) to a specialized mineral dataset to map mineral deposits within the study area. Subsequently, we build a hybrid model combining deep CNN layers with a support vector machine (SVM). This merger significantly improves classification accuracy from an initial 92.7% to 95.3%. In our approach, CNN layers function as feature extractors while the SVM serves as the classification model. Moreover, we conduct an evaluation of the SVM using polynomial kernels of degrees 3, 6, 9, and 12. The results indicate that the SVM with a degree of 12 achieved the highest classification accuracy, followed by degrees 9, 6, and 3. Experimental results demonstrate the effectiveness of our proposed method for classifying remote sensing imaging data, showcasing its potential for advancing mineral delineation and rock type analysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know